-
-
0t^5+pt^3+qt^2+rt+s=0有一般公式吗
-
1x5+1=0的五根为e^(±πi/5),e^(±3πi/5),e^(πi)。
-
0只是没找到而已
-
4求x^5-10x+s=0的解,有一般公式吗?
-
0:x^5-x+1=0, 解:求n+1/n: s/((-r/10)^1.25)=1/(1/10)^1.25=17.78279410038923, 有: n+1/n=-2.0757926297988 n=-1.315796945488383&-0.7599956843104169 →m=n^5=-3.944067776422518&-0.253545338641988 →y=1/m^(3/5)+m^(3/5)=-2.71703619706489&-2.71703619706489 A^3+1/A^3=-2.71703619706489 A=-0.75999568431042 A+1/A=-2.075792629798798 A^5+1/A^5=-4.197613115064432 B=(-s/(A^5+1/A^5+5y))^(1/5)= (-1/(-4.197613115064432+5*-2.71703619706489))^(1/5) =0.5623413251903513 x=B(A+1/A)=0.5623413251903513*-2.075792629798798 =-1.16730397826142 验:-1.16730397826142^5-1*-1.16730397826142=-1,正确
-
0一元五次方程的新进展 例: x^5+x^3+x/5+1=0, X1=((1^2/4+1^5/3125)^0.5-1/2)^(1/5)-((1^2/4+1^5/3125)^0.5+1/2)^(1/5) =-0.8000767647990794 x2=-((1^2/4+1^5/3125)^0.5-1/2)^(0.2)e^(πi/5)+((1^2/4+1^5/3125)^0.5+1/2)^(0.2)/e^(πi/5)=(-0.6472756995269829+0.7053723843639111i) x3=((1^2/4+1^5/3125)^0.5-1/2)^(1/5)*e^(2πi/5)-((1^2/4+1^5/3125)^0.5+1/2)^(1/5)/e^(2πi/5)=(-0.2472373171274433+1.141316492626363i) x4=-((1^2/4+1^5/3125)^0.5-1/2)^(1/5)e^(3πi/5)+((1^2/4+1^5/3125)^0.5+1/2)^(1/5)/e^(3πi/5)=(-0.2472373171274432-1.141316492626363i) x5=((1^2/4+1^5/3125)^0.5-1/2)^(1/5)*e^(4πi/5)-((1^2/4+1^5/3
-
0例题1>已知数列an,最大值为961,共有项数n=61,求最小值及和值。 解:∵(n+1)/2=31,即第31项为最大项,或有N(61+1)-N^2=961,解得N=31, 最小值为1*(62)-1=61即为项数n, 和值为61^3/6+61^2/2+61/3=39711
-
0
-
2一元五次方程破解一书,实际上并没有给出一个直观的公式,所以还不能算破解
-
666666
-
12赵奕珅你妈喊你回家吃饭
-
0
-
0好鼻子
-
6