教育部考试中心根据教师资格证考试标准制定了各学科考试大纲,并将其确立为考生学习和考试命题的主要依据。历年教师资格证考试均具有考试大纲不变,题型、题量基本稳定,重要考点反复出现等突出特点,数学分析知识点也是非常稳定
,下面我们就来分析一下科目三数学分析的常考内容。
一、极限
求极限的方法有很多,我们一起讨论出现频率比较高的方法。1、利用恒等变形求极限:利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等;2、利用变量代换求极限:利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等;3、利用等价无穷小求极限:利用等价无穷小求极限是求极限极为重要的一种方法,也是最为简便、快捷的方法。学习时不仅要熟记常用的等价无穷小,还应学会灵活应用。同时应注意:只有在无穷小作为因式时,才能用其等价无穷小替换;4、利用洛必达法则求极限:利用洛必达法则求极限适用于型未定式,其它类型未定式也可通过恒等变形转化为型。洛必达法则使用十分方便,但使用时注意检查是否符合洛必达法则的使用条件。
二、积分
1、凑微分法:把被积分式凑成某个函数的微分的积分方法 要求:熟练掌握基本积分公式。 对于复杂式子可以将其分为两个部分,对复杂部分求导,结果与简单部分比较;2、换元法:包括整体换元,部分换元。还可分三角函数换元,指数换元,对数换元;3、分部积分法:利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分,注意谁做u谁做v。
三、导数与微分
1、隐函数求导:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
2、全微分:①求关于x.y的偏导;②确定全微分。
四、函数的连续性
1、函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0), 则称f(x)在点x0处连续。若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。
2、函数连续必须同时满足三个条件:
(1)函数在x0 处有定义;
(2)x-> x0时,limf(x)存在;
(3)x-> x0时,limf(x)=f(x0);则初等函数在其定义域内是连续的。
3、间断点
找出函数的间断点后,然后判断间断点的类型,主要通过间断点的左右极限情况来划分:(1)第一类间断点:在间断点处的左右极限都存在.可以分为以下两种:①可去间断点:左右极限存在且相等;②跳跃间断点:左右极限存在但不相等.
(2)第二类间断点:在间断点处的极限至少有一个不存在.经常使用到的,有以下两种形式的第二类间断点:①无穷间断点:在间断点的极限为无穷大.②振荡间断点:在间断点的极限不稳定存在。
【以上内容由中公教育为您倾情整理】
,下面我们就来分析一下科目三数学分析的常考内容。
一、极限
求极限的方法有很多,我们一起讨论出现频率比较高的方法。1、利用恒等变形求极限:利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等;2、利用变量代换求极限:利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。常用的变量代换有倒代换、整体代换、三角代换等;3、利用等价无穷小求极限:利用等价无穷小求极限是求极限极为重要的一种方法,也是最为简便、快捷的方法。学习时不仅要熟记常用的等价无穷小,还应学会灵活应用。同时应注意:只有在无穷小作为因式时,才能用其等价无穷小替换;4、利用洛必达法则求极限:利用洛必达法则求极限适用于型未定式,其它类型未定式也可通过恒等变形转化为型。洛必达法则使用十分方便,但使用时注意检查是否符合洛必达法则的使用条件。
二、积分
1、凑微分法:把被积分式凑成某个函数的微分的积分方法 要求:熟练掌握基本积分公式。 对于复杂式子可以将其分为两个部分,对复杂部分求导,结果与简单部分比较;2、换元法:包括整体换元,部分换元。还可分三角函数换元,指数换元,对数换元;3、分部积分法:利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分,注意谁做u谁做v。
三、导数与微分
1、隐函数求导:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
2、全微分:①求关于x.y的偏导;②确定全微分。
四、函数的连续性
1、函数连续性的定义:设函数f(x)在点x0的某个邻域内有定义,若 lim(x→x0)f(x)=f(x0), 则称f(x)在点x0处连续。若函数f(x)在区间I的每一点都连续,则称f(x)在区间I上连续。
2、函数连续必须同时满足三个条件:
(1)函数在x0 处有定义;
(2)x-> x0时,limf(x)存在;
(3)x-> x0时,limf(x)=f(x0);则初等函数在其定义域内是连续的。
3、间断点
找出函数的间断点后,然后判断间断点的类型,主要通过间断点的左右极限情况来划分:(1)第一类间断点:在间断点处的左右极限都存在.可以分为以下两种:①可去间断点:左右极限存在且相等;②跳跃间断点:左右极限存在但不相等.
(2)第二类间断点:在间断点处的极限至少有一个不存在.经常使用到的,有以下两种形式的第二类间断点:①无穷间断点:在间断点的极限为无穷大.②振荡间断点:在间断点的极限不稳定存在。
【以上内容由中公教育为您倾情整理】