在初始时刻将一个波包放在rbs处考察波包随时间的演化
r1 = 0.05;
r2 = 5;
xx1 = (D[\[Rho][t, rb], rb]) == -(1/TEb) (D[GLb, rb]) \[Rho][t,
rb] /. rb -> r1;
xx2 = (D[\[Rho][t, rb], rb]) == -(1/TEb) (D[GLb, rb]) \[Rho][t,
rb] /. rb -> r2;
GLb = (1 + 45 rb^8 + 24 PEb rb^10 - 64 rb^9 TEb)/(
6 rb^4); rbs = 0.6804971882808477`;
rbl = 2.780560197330779`; PEb = 0.2379247924446251`; TEb = 0.5`;
pdeSoln =
NDSolveValue[{D[\[Rho][t, rb], t] ==
500 TEb D[E^(-GLb/TEb) D[E^(GLb/TEb) \[Rho][t, rb], rb],
rb], \[Rho][0, rb] ==
1/(0.1 Sqrt[\[Pi]]) E^(-((rb - rbs)^2/0.01)), xx1, xx2}, \[Rho][t,
rb], {t, 0, 20000}, {rb, r1, r2}]
Plot3D[pdeSoln, {t, 0, 20000}, {rb, r1, r2}, PlotRange -> {0, 6},
AspectRatio -> 10/13, PlotPoints -> 150, MaxRecursion -> 2,
ColorFunction -> "Rainbow"]
给出了一个有问题的结果
r1 = 0.05;
r2 = 5;
xx1 = (D[\[Rho][t, rb], rb]) == -(1/TEb) (D[GLb, rb]) \[Rho][t,
rb] /. rb -> r1;
xx2 = (D[\[Rho][t, rb], rb]) == -(1/TEb) (D[GLb, rb]) \[Rho][t,
rb] /. rb -> r2;
GLb = (1 + 45 rb^8 + 24 PEb rb^10 - 64 rb^9 TEb)/(
6 rb^4); rbs = 0.6804971882808477`;
rbl = 2.780560197330779`; PEb = 0.2379247924446251`; TEb = 0.5`;
pdeSoln =
NDSolveValue[{D[\[Rho][t, rb], t] ==
500 TEb D[E^(-GLb/TEb) D[E^(GLb/TEb) \[Rho][t, rb], rb],
rb], \[Rho][0, rb] ==
1/(0.1 Sqrt[\[Pi]]) E^(-((rb - rbs)^2/0.01)), xx1, xx2}, \[Rho][t,
rb], {t, 0, 20000}, {rb, r1, r2}]
Plot3D[pdeSoln, {t, 0, 20000}, {rb, r1, r2}, PlotRange -> {0, 6},
AspectRatio -> 10/13, PlotPoints -> 150, MaxRecursion -> 2,
ColorFunction -> "Rainbow"]
给出了一个有问题的结果