假设这样一个定理成立:若n²+1是素数,则n+1是素数。
我们知道n=14、20等时不成立,但我们假设成立,则有逆否定理,若n+1不是素数,则n²+1不是素数。对于费马素数,我们知道f5不是素数,则根据假设以后的都不是素数。但我们知道n=14、20等情况,所以这个逆否定理不成立,我们是不是可以推测f14或f28,f20或f40等是素数呢?
我们知道n=14、20等时不成立,但我们假设成立,则有逆否定理,若n+1不是素数,则n²+1不是素数。对于费马素数,我们知道f5不是素数,则根据假设以后的都不是素数。但我们知道n=14、20等情况,所以这个逆否定理不成立,我们是不是可以推测f14或f28,f20或f40等是素数呢?