#数字孪生##人工智能#
伙伴们,之前我们了解了人工智能和数字孪生的各种技术及其应用,那么遇到故障时该如何处理呢?今天小信与你一起解锁故障诊断。
故障诊断是利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
能够精准诊断,分析决策,保障后续的工作,并进行预测性维护,这些天机巧都能为你实现。
故障诊断的历史发展阶段:
故障诊断的主要任务:
诊断方法:
近代故障诊断技术的发展已经历30年,但形成一门"故障诊断学"的综合性新学科,还是近几年逐步发展起来的,以不同的角度来看,有多种故障诊断的分类方法,这些方法各有特点。
概括而言,故障诊断方法可以分成两大类:基于数学模型的故障诊断方法、基于人工智能的故障诊断方法。
基于专家系统的诊断方法
基于专家系统的诊断方法是故障诊断领域中最为引人注目的发展方向之一,也是研究最多、应用最广的一类智能型诊断技术。它大致经历了两个发展阶段:基于浅知识领域专家的经验知识的故障诊断系统、基于深知识诊断对象的模型知识的故障诊断系统。
(1)基于浅知识的智能型专家诊断方法
浅知识是指领域专家的经验知识。基于浅知识的故障诊断系统通过演绎推理或产生式推理来获取诊断结果,其目的是寻找一个故障集合,使之能对一个给定集合产生的原因作出最佳解释(包括存在的和缺席的)。
基于浅知识的故障诊断方法具有知识直接表达、形式统一、高模组性、推理速度快等优点。但也有局限性,如知识集不完备,对没有考虑到的问题系统容易
陷入困境;对诊断结果的解释能力弱等缺点。
(2)基于深知识的智能型专家诊断方法
深知识则是指有关诊断对象的结构、性能和功能的知识。基于深知识的故障诊断系统,要求诊断对象的每一个环境具有明显的输入输出表达关系,诊断时首先通过诊断对象实际输出与期望输出之间的不一致,生成引起这种不一致的原因集合,然后根据诊断对象领(域中的第一定律知识)及其具有明确科学依据的知识他内部特定的约束联系,采用一定的算法,找出可能的故障源。
基于深知识的智能型专家诊断方法具有知识获取方便、维护简单、完备性强等优点,但缺点是搜索空间大,推理速度慢。
(3)基于浅知识和深知识的智能型专家混合诊断方法
基于复杂设备系统而言,无论单独使用浅知识或深知识,都难以妥善地完成诊断任务,只有将两者结合起来,才能使诊断系统的性能得到优化。因此,为了使故障智能型诊断系统具备与人类专家能力相近的知识,研发者在建造智能型诊断系统时,越来越强调不仅要重视领域专家的经验知识,更要注重诊断对象的结构、功能、原理等知识,研究的重点是浅知识与深知识的整合表示方法和使用方法。事实上,一个高水平的领域专家在进行诊断问题求解时,总是将他具有的深知识和浅知识结合起来,完成诊断任务。一般优先使用浅知识,找到诊断问题的解或者是近似解,必要时用深知识获得诊断问题的精确解。
基于神经网络的人工智能型诊断方法
知识获取上,神经网络的知识不需要由知识工程师进行整理、总结以及消化领域专家的知识,只需要用领域专家解决问题的实例或范例来训练神经网络;在知识表示方面,神经网络采取隐式表示,并将某一问题的若干知识表示在同一网络中,通用性高、便于实现知识的总动获取和并行联想推理。在知识推理方面,神经网络通过神经元之间的相互作用来实现推理。
前在许多领域的故障诊断系统中已开始应用,如在化工设备、核反应器、汽轮机、旋转机械和电动机等领域都取得了较好的效果。由于神经网络从故障事例中学到的知识只是一些分布权重,而不是类似领域专家逻辑思维的产生式规则,因此诊断推理过程不能够解释,缺乏透明度。
基于模糊数学的人工智能型诊断方法
许多诊断对象的故障状态是模糊的,诊断这类故障的一个有效的方法是应用模糊数学的理论。基于模糊数学的诊断方法,不需要建立精确的数学模型(membershipfunction),适当的运用局部函数和模糊规则,进行模糊推理就可以实现模糊诊断的智能化。
基于故障树的人工智能型诊断方法
故障树方法是由电脑依据故障与原因的先验知识和故障率知识自动辅助生成故障树,并自动生成故障树的搜索过程。诊断过程从系统的某一故障"为什么出现这种显现"开始,沿着故障树不断提问而逐级构成一个梯阶故障树,透过对此故障树的启发式搜索,最终查出故障的根本原因。在提问过程中,有效合理地使用系统的及时动态数据,将有助于诊断过程的进行。于故障树的诊断方法,类似于人类的思维方式,易于理解,在实际情况应用较多,但大多与其他方法结合使用。
故障诊断的方法繁多且各有其适用范围,随着人工智能和物联网技术的发展,它能够为我们规避各种风险,节约时间和成本,并有效提升设备和装备等的可靠性和安全性。
(知识来源于360百科)
伙伴们,之前我们了解了人工智能和数字孪生的各种技术及其应用,那么遇到故障时该如何处理呢?今天小信与你一起解锁故障诊断。
故障诊断是利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
能够精准诊断,分析决策,保障后续的工作,并进行预测性维护,这些天机巧都能为你实现。
故障诊断的历史发展阶段:
故障诊断的主要任务:
诊断方法:
近代故障诊断技术的发展已经历30年,但形成一门"故障诊断学"的综合性新学科,还是近几年逐步发展起来的,以不同的角度来看,有多种故障诊断的分类方法,这些方法各有特点。
概括而言,故障诊断方法可以分成两大类:基于数学模型的故障诊断方法、基于人工智能的故障诊断方法。
基于专家系统的诊断方法
基于专家系统的诊断方法是故障诊断领域中最为引人注目的发展方向之一,也是研究最多、应用最广的一类智能型诊断技术。它大致经历了两个发展阶段:基于浅知识领域专家的经验知识的故障诊断系统、基于深知识诊断对象的模型知识的故障诊断系统。
(1)基于浅知识的智能型专家诊断方法
浅知识是指领域专家的经验知识。基于浅知识的故障诊断系统通过演绎推理或产生式推理来获取诊断结果,其目的是寻找一个故障集合,使之能对一个给定集合产生的原因作出最佳解释(包括存在的和缺席的)。
基于浅知识的故障诊断方法具有知识直接表达、形式统一、高模组性、推理速度快等优点。但也有局限性,如知识集不完备,对没有考虑到的问题系统容易
陷入困境;对诊断结果的解释能力弱等缺点。
(2)基于深知识的智能型专家诊断方法
深知识则是指有关诊断对象的结构、性能和功能的知识。基于深知识的故障诊断系统,要求诊断对象的每一个环境具有明显的输入输出表达关系,诊断时首先通过诊断对象实际输出与期望输出之间的不一致,生成引起这种不一致的原因集合,然后根据诊断对象领(域中的第一定律知识)及其具有明确科学依据的知识他内部特定的约束联系,采用一定的算法,找出可能的故障源。
基于深知识的智能型专家诊断方法具有知识获取方便、维护简单、完备性强等优点,但缺点是搜索空间大,推理速度慢。
(3)基于浅知识和深知识的智能型专家混合诊断方法
基于复杂设备系统而言,无论单独使用浅知识或深知识,都难以妥善地完成诊断任务,只有将两者结合起来,才能使诊断系统的性能得到优化。因此,为了使故障智能型诊断系统具备与人类专家能力相近的知识,研发者在建造智能型诊断系统时,越来越强调不仅要重视领域专家的经验知识,更要注重诊断对象的结构、功能、原理等知识,研究的重点是浅知识与深知识的整合表示方法和使用方法。事实上,一个高水平的领域专家在进行诊断问题求解时,总是将他具有的深知识和浅知识结合起来,完成诊断任务。一般优先使用浅知识,找到诊断问题的解或者是近似解,必要时用深知识获得诊断问题的精确解。
基于神经网络的人工智能型诊断方法
知识获取上,神经网络的知识不需要由知识工程师进行整理、总结以及消化领域专家的知识,只需要用领域专家解决问题的实例或范例来训练神经网络;在知识表示方面,神经网络采取隐式表示,并将某一问题的若干知识表示在同一网络中,通用性高、便于实现知识的总动获取和并行联想推理。在知识推理方面,神经网络通过神经元之间的相互作用来实现推理。
前在许多领域的故障诊断系统中已开始应用,如在化工设备、核反应器、汽轮机、旋转机械和电动机等领域都取得了较好的效果。由于神经网络从故障事例中学到的知识只是一些分布权重,而不是类似领域专家逻辑思维的产生式规则,因此诊断推理过程不能够解释,缺乏透明度。
基于模糊数学的人工智能型诊断方法
许多诊断对象的故障状态是模糊的,诊断这类故障的一个有效的方法是应用模糊数学的理论。基于模糊数学的诊断方法,不需要建立精确的数学模型(membershipfunction),适当的运用局部函数和模糊规则,进行模糊推理就可以实现模糊诊断的智能化。
基于故障树的人工智能型诊断方法
故障树方法是由电脑依据故障与原因的先验知识和故障率知识自动辅助生成故障树,并自动生成故障树的搜索过程。诊断过程从系统的某一故障"为什么出现这种显现"开始,沿着故障树不断提问而逐级构成一个梯阶故障树,透过对此故障树的启发式搜索,最终查出故障的根本原因。在提问过程中,有效合理地使用系统的及时动态数据,将有助于诊断过程的进行。于故障树的诊断方法,类似于人类的思维方式,易于理解,在实际情况应用较多,但大多与其他方法结合使用。
故障诊断的方法繁多且各有其适用范围,随着人工智能和物联网技术的发展,它能够为我们规避各种风险,节约时间和成本,并有效提升设备和装备等的可靠性和安全性。
(知识来源于360百科)