代码炸了,有人能帮我改一下吗
问题:
错误使用 .*
矩阵维度必须一致。
出错 genetic_algorithm_example (line 17)
population = lb + (ub - lb) .* rand(population_size, num_vars);
代码:
function genetic_algorithm_example()
% 遗传算法参数
population_size = 50; % 种群大小
num_vars = 7; % 变量数量
ngenerations = 100; % 迭代代数
lb = [0.65; 0.75; 0.20; 0.08; 0.08; 0.08; 2.70]; % 变量的下界,确保是列向量
ub = [0.90; 1.00; 0.30; 0.15; 0.15; 0.15; 2.90]; % 变量的上界,确保是列向量
crossover_rate = 0.8; % 交叉率
mutation_rate = 0.02; % 变异率
% 检查lb和ub的维度是否正确
if size(lb, 1) ~= num_vars || size(ub, 1) ~= num_vars
error('lb 和 ub 的维度必须与 num_vars 匹配');
end
% 初始化种群
population = lb + (ub - lb) .* rand(population_size, num_vars);
% 运行遗传算法
for generation = 1:ngenerations
% 计算适应度
fitness = objectiveFunction(population);
% 选择
selected_population = tournamentSelection(population, fitness, population_size);
% 交叉
offspring = crossover(selected_population, crossover_rate);
% 变异
mutated_population = mutate(offspring, mutation_rate, lb, ub);
% 更新种群
population = mutated_population;
% 打印进度
disp(['Generation ', num2str(generation), ', Best Fitness: ', num2str(max(fitness))]);
end
% 找到最优解
[best_fitness, best_index] = max(fitness);
optimized_parameters = population(best_index, :);
% 输出结果
fprintf('优化后的参数:\n');
disp(optimized_parameters);
fprintf('最小阻力值:%.2f\n', -best_fitness);
end
问题:
错误使用 .*
矩阵维度必须一致。
出错 genetic_algorithm_example (line 17)
population = lb + (ub - lb) .* rand(population_size, num_vars);
代码:
function genetic_algorithm_example()
% 遗传算法参数
population_size = 50; % 种群大小
num_vars = 7; % 变量数量
ngenerations = 100; % 迭代代数
lb = [0.65; 0.75; 0.20; 0.08; 0.08; 0.08; 2.70]; % 变量的下界,确保是列向量
ub = [0.90; 1.00; 0.30; 0.15; 0.15; 0.15; 2.90]; % 变量的上界,确保是列向量
crossover_rate = 0.8; % 交叉率
mutation_rate = 0.02; % 变异率
% 检查lb和ub的维度是否正确
if size(lb, 1) ~= num_vars || size(ub, 1) ~= num_vars
error('lb 和 ub 的维度必须与 num_vars 匹配');
end
% 初始化种群
population = lb + (ub - lb) .* rand(population_size, num_vars);
% 运行遗传算法
for generation = 1:ngenerations
% 计算适应度
fitness = objectiveFunction(population);
% 选择
selected_population = tournamentSelection(population, fitness, population_size);
% 交叉
offspring = crossover(selected_population, crossover_rate);
% 变异
mutated_population = mutate(offspring, mutation_rate, lb, ub);
% 更新种群
population = mutated_population;
% 打印进度
disp(['Generation ', num2str(generation), ', Best Fitness: ', num2str(max(fitness))]);
end
% 找到最优解
[best_fitness, best_index] = max(fitness);
optimized_parameters = population(best_index, :);
% 输出结果
fprintf('优化后的参数:\n');
disp(optimized_parameters);
fprintf('最小阻力值:%.2f\n', -best_fitness);
end